Regenerative amplification of picosecond pulses in Nd:YAG at repetition rates in the 100-kHz range

نویسندگان

  • A. J. Ruggiero
  • G. R. Fleming
چکیده

An all-acousto-optically switched picosecond Nd:YAG regenerative amplifier has been developed for operation at pulse repetition rates in the 20-100-kHz range. The amplifier produces stable 50-ps pulses at 1064 nm in a TEMOO transverse mode with pulse energies of the order of 20-100 AJ. Generation of the second harmonic at 532 nm in KTP crystal results in conversion efficiencies greater than 40%. Using the frequency-doubled TEMoo output of the regenerative amplifier to pump a two-pass dye amplifier, we have amplified the 50-fs output pulses from an antiresonant ring dye laser to the 200-nJ level and have successfully produced a stable whitelight continuum at a 100-kHz repetition rate. This preliminary demonstration of synchronous dye-laser amplification and continuum generation attests to the overall quality of the regenerative amplifier output and the general utility of this approach for high-repetition-rate amplification. Limitations of the current regenerative amplifier design and scaling to higher pulse energies are briefly discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picosecond-pulse amplification with an external passive optical cavity.

We experimentally demonstrate the amplification of picosecond pulses at high repetition rates through the coherent addition of successive pulses of a mode-locked pulse train in a high-finesse optical cavity equipped with cavity dumping. Amplification greater than 30 times is obtained at a repetition rate of 253 kHz, boosting the 5.3-nJ pulses from a commercial mode-locked picosecond Ti:sapphire...

متن کامل

Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded by a gain-switched laser diode.

Picosecond pulses emitted from a gain-switched laser diode have been amplified in a Ti:sapphire regenerative amplifier indirectly pumped by a 4-W laser diode. This all-solid-state system produced microjoule pulses tunable from 803 to 840 nm at repetition rates up to 25 kHz with durations of 70-100 ps. By frequency doubling and tripling the output, we generated blue and UV pulses tunable from 40...

متن کامل

Diode-Pumped High Energy and High Average Power

We present our research on the high energy picosecond laser operating at a repetition rate of 1 kHz and the high average power picosecond laser running at 100 kHz based on bulk Nd-doped crystals. With diode-pumped solid state (DPSS) hybrid amplifiers consisting of a picosecond oscillator, a regenerative amplifier, end-pumped single-pass amplifiers, and a side-pumped amplifier, an output energy ...

متن کامل

Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond.

We explore the potential of Nd:YAG single-crystal fibers for the amplification of passively Q-switched microlasers operating below 1 ns. Different regimes are tested in single or double pass configurations. For high gain and high power amplification this novel gain medium provided average powers up to 20 W at high repetition rate (over 40 kHz) for a pulse duration of 1 ns. As an energy amplifie...

متن کامل

High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier.

We demonstrate amplification of picosecond laser pulses to 40?mJ at a 2?kHz pulse repetition frequency (PRF) from a two-stage cryogenic chirped-pulse Yb:YAG amplifier, composed of a regenerative amplifier (RGA) and a two-pass booster amplifier. The RGA produces 8.2mJ of energy at 2kHz PRF and 13.2mJ at 1kHz PRF with excellent energy stability (approximately 0.3% rms) and beam quality (M(2)<1.1)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002